

National Environmental Monitoring Conference Garden Grove, CA, August 8-12, 2016

Modern Decision Methodology in Radiochemical Testing

Thomas M. Semkow and Clayton J. Bradt thomas.semkow@health.ny.gov

Decision methodology

Decision methodology in measurements of analytical quantities addresses:

- i. the measures of detectability
- ii. the decision whether a detected quantity is distinguishable from the noise
- iii. if the detected result meets data objectives

Classical decision methodology

$$s = c - b$$

- c gross sample signal (counts), measured
- b background signal (counts), measured separately
- s net sample signal (counts), would like to have

Hypothetical case: no statistical fluctuations

$$s = L_{\rm C}$$
, not detected $s > L_{\rm C}$, detected

 $L_{\rm C}$ is decision level above the noise

 $L_{\rm D}$ is detection limit which meets data objectives

Including statistical fluctuations

$$s \leq L_{\rm C1}$$
, not detected $L_{\rm C1} < s \leq L_{\rm C2}$, no decision $s > L_{\rm C2}$, detected

Special case: "no decision" region eliminated

$$s \le L_{\rm C}$$
, not detected $s > L_{\rm C}$, detected

 $L_{\rm D} \equiv {
m MDA}$, minimum detectable activity, derivable in radiochemistry

Average of null signal > 0: interference or positive MB

Report as is, even if negative, or censor?

Quantity	Case result < 0	Case result > 0
Result	-1.0	1.0
Sigma	1.0	1.0
Report as is	-1.0 ± 1.0	1.0 ± 1.0
Decision level	$1.6 \cdot 1.0 = 1.6$	$1.6 \cdot 1.0 = 1.6$
Decision	not detected	not detected
Upper limit	-1.0 + 1.6 = 0.6	1.0 + 1.6 = 2.6
Censor	< 0.6	< 2.6

Report	Advantage	Disadvantage		
As is	possible to average	can be a fluke		
Censor	risk assessment	not possible to average		

Appendix

Selected literature

- Altshuler B., Pasternack B. (1963). Statistical measures of the lower limit of detection of a radioactivity counter. *Health Physics* **9** 293-298.
- Currie L.A. (1968). Limits for qualitative detection and quantitative determination, application to radiochemistry. *Analytical Chemistry* **40** 586-593.
- Gogolak C.V., Powers G.E., Huffert A.M. (1998). A nonparametric statistical methodology for the design and analysis of final status decommissioning surveys.
 U.S. Nuclear Regulatory Commission. *Report* NUREG-1505, Rev. 1.
- Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP, 2004), Volume III, Chapter 20. *Report* NUREG-1576, EPA 402-B-04-001C, NTIS PB2004-105421.
- Lyons L. (2012). Discovery or fluke: statistics in particle physics. *Physics Today* **65**(7) 45-51.
- Semkow T.M., Beach S.E., Khan A.J., Bari A., Bradt C.J., Haines D.K., Syed U.-F. (2012). Multi-window counting of radioactivity. *Nuclear Instruments and Methods in Physics Research A* **664** 236-244.

Numerical example

Detector efficiency	Sample mass (kg)	1-Sided CL	k_1	2-Sided CL	k_2
0.10	0.60	0.95	1.64	0.95	1.96
Quantity	Background	Cs-137	Sample	Sample	Sample
		source	1	2	3
Time (s)	1000	10	100	100	100
Counts	4888	2841	502	466	531
Net rate (c/s)		279.21	0.13	-0.23	0.42
Decision level (c/s)		1.21	0.39	0.39	0.39
Detected?		Yes	No	No	Yes
Upper limit (c/s)			0.52	0.15	
Uncertainty of net rate (c/s)		10.54			0.64
Detection limit (c/s)		2.70	0.80	0.80	0.80
Activity (Bq/kg)		4653.53			7.03
Activity uncertainty (Bq/kg)		174.13			7.87
Upper limit (Bq/kg)			8.73	2.51	
MDA (Bq/kg)		44.94	13.36	13.36	13.36

Derivations for the numerical example in Table

```
decision level
         detection limit
         upper limit
         gross sample signal (counts)
\boldsymbol{\mathcal{C}}
b
         background signal (counts)
         gross sample counting time
         background counting time
R_{\rm c}
         gross sample counting rate
R_{\rm b}
         background counting rate
         net sample counting rate
         variance
         Gaussian continuity correction
r
         1-sided deviate (1.645 for 95 % confidence level)
k_1
         2-sided deviate (1.960 for 95 % confidence level)
k_2
         detection efficiency
\mathcal{E}
         sample mass
m
         sample volume
```

$$R_{\rm C} = \frac{c}{t_{\rm S}}$$
, $R_{\rm b} = \frac{b}{t_{\rm b}}$, $R_{\rm S} = R_{\rm C} - R_{\rm b}$

$$\sigma^{2}(R_{S}) = \sigma^{2}(R_{C}) + \sigma^{2}(R_{b}) = \frac{R_{C}}{t_{S}} + \frac{R_{b}}{t_{b}} = \frac{R_{S}}{t_{S}} + R_{b}\left(\frac{1}{t_{S}} + \frac{1}{t_{b}}\right)$$

$$\sigma^{2}(R_{S} = 0) = 2rR_{b}$$
 $r = \frac{1}{2} \left(\frac{1}{t_{S}} + \frac{1}{t_{b}} \right)$

$$L_{\rm C} = r + k_1 \sigma(R_{\rm S} = 0)$$

$$L_{\rm U} = r + R_{\rm S} + k_1 \sigma(R_{\rm S})$$

decision rule:

$$R_{\rm S} \leq L_{\rm C}$$
, not detected $R_{\rm S} > L_{\rm C}$, detected

if detected, report
$$R_S \pm k_2 \sigma(R_S)$$

if not detected, report
$$L_{U}$$

$$L_D = r + L_C + k_1 \sigma (R_S = L_D) = r + L_C + \frac{k_1^2}{t_S} + \sqrt{\left(r + L_C + \frac{k_1^2}{t_S}\right)^2 - 4rL_C}$$

$$\cong 2L_C + \frac{k_1^2}{t_S} + 2r \frac{2t_S r + k_1^2}{2t_S L_C + 2t_S r + k_1^2}$$

Converting to massic (specific) activity or volumic activity (activity concentration)

Divide final formulas for $R_{\rm s}$, $\sigma(R_{\rm s})$, $L_{\rm C}$, $L_{\rm D}$, and $L_{\rm U}$ by ε and, m or V

Note: uncertainties due to ε , m, or V were not propagated in this version